Search results for " ab initio calculations."

showing 10 items of 13 documents

Theoretical study of the low‐lying states of trans‐1,3‐butadiene

1992

We present extensive ab initio calculations on the low‐lying electronic states of trans‐1,3‐butadiene within the multireference configuration interaction (MRCI) framework by selecting the configurations with a perturbative criterion. The X 1Ag ground state and 1 3Bu, 1 3Ag, 2 1Ag, and 1 1Bu valence excited states have been calculated at a fixed geometry. The results obtained are in good agreement with previous experimental and calculated values, and could help to understand polyene spectroscopy, photochemistry, and photophysics. The advantages of a MRCI method where the most important contributions to the total MRCI wave function, perturbatively selected, are treated variationally, and the …

ButadieneElectronic correlationChemistryGeneral Physics and AstronomyMultireference configuration interactionPolyenesConfiguration interactionChromophoresUNESCO::FÍSICA::Química físicaConfiguration InteractionComputational chemistryAb initio quantum chemistry methodsExcited stateButadiene ; Ab Initio Calculations ; Configuration Interaction ; Perturbation Theory ; Energy Levels ; Molecular Orbital Method ; Polyenes ; Biology ; ChromophoresEnergy LevelsPerturbation TheoryPerturbation theory (quantum mechanics)Molecular Orbital MethodPhysical and Theoretical ChemistryAtomic physicsGround stateWave function:FÍSICA::Química física [UNESCO]Ab Initio CalculationsBiology
researchProduct

Ab initio determination of the ionization potentials of DNA and RNA nucleobases

2006

Quantum chemical high level ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute vertical and adiabatic ionization potentials of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. Several states of their cations have been also calculated. The present results represent a systematic compendium of these magnitudes, establishing theoretical reference values at a level not reported before, calibrating computational strategies, and guiding the assignment of the features in the experimental photoelectron spectra. Daniel.Roca@uv.es Mercedes.Rubio@uv.es Manuela.Merchan@uv.es Luis.Serrano@uv.es

DNA ; Macromolecules ; Ionisation potential ; Photoelectron spectra ; Molecular biophysics ; Ab initio calculations ; Coupled cluster calculations ; Perturbation theoryGuanineGuaninePhotochemistryAb initioBiophysicsGeneral Physics and AstronomyIonisation potentialPerturbation theoryNucleobasechemistry.chemical_compoundCytosinePhotoelectron spectraCoupled cluster calculationsAb initio quantum chemistry methodsComputational chemistryIonizationPhysics::Atomic and Molecular ClustersPhysical and Theoretical ChemistryUracil:FÍSICA::Química física [UNESCO]IonsPhysics::Biological PhysicsQuantitative Biology::BiomoleculesBase CompositionChemistry PhysicalAdenineUracilDNAMolecular biophysicsQuantitative Biology::GenomicsThymineUNESCO::FÍSICA::Química físicachemistryMacromoleculesCalibrationQuantum TheoryRNAAb initio calculationsCytosineSoftwareThymine
researchProduct

Towards an accurate molecular orbital theory for excited states : Ethene, butadiene, and hexatriene

1993

A newly proposed quantum chemical approach for ab initio calculations of electronic spectra of molecular systems is applied to the molecules ethene, trans‐1,3‐butadiene, and trans‐trans‐1,3,5‐hexatriene. The method has the aim of being accurate to better than 0.5 eV for excitation energies and is expected to provide structural and physical data for the excited states with good reliability. The approach is based on the complete active space (CAS) SCF method, which gives a proper description of the major features in the electronic structure of the excited state, independent of its complexity, accounts for all near degeneracy effects, and includes full orbital relaxation. Remaining dynamic ele…

ErrorsGeneral Physics and AstronomyPolyenesElectronic structuresymbols.namesakeRydberg StatesAb initio quantum chemistry methodsComputational chemistrySinglet statePhysical and Theoretical ChemistryTriplet state:FÍSICA::Química física [UNESCO]AccuracyExcitationCalculation MethodsButadieneTripletsChemistryMolecular orbital theoryScf CalculationsExcited StatesCalculation Methods ; Quantum Chemistry ; Ab Initio Calculations ; Electron Spectra ; Butadiene ; Accuracy ; Scf Calculations ; Triplets ; Rydberg States ; Excitation ; Errors ; Polyenes ; Excited StatesQuantum ChemistryUNESCO::FÍSICA::Química físicaElectron SpectraExcited stateRydberg formulasymbolsRydberg stateAtomic physicsAb Initio Calculations
researchProduct

Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids

2018

The critical points analysis of electron density,i.e. ρ(x), fromab initiocalculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points,i.e. such that ∇ρ(xc) = 0 and λ1, λ2, λ3≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) atxc], towards degenerate critical points,i.e. ∇ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood ofxcand allo…

Hessian matrixElectron densitycatastrophe theory010504 meteorology & atmospheric sciencesCondensed Matter Physic010502 geochemistry & geophysics01 natural sciencesBiochemistryInstabilityInorganic Chemistrysymbols.namesakeStructural BiologyAb initio quantum chemistry methodsGeneral Materials Sciencephase/state transitions in crystalPhysical and Theoretical Chemistryphase/state transitions in crystalsEigenvalues and eigenvectors0105 earth and related environmental sciencesPhysicsab initio calculationelectron-density critical pointCondensed matter physicsab initio calculationsDegenerate energy levelsCondensed Matter PhysicsGibbs free energyelectron-density critical points catastrophe theory phase/state transitions in crystals ab initio calculations.symbolsMaterials Science (all)Catastrophe theoryelectron-density critical points
researchProduct

Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials.…

1997

The first molecular dynamics (MD) simulation of a chemical process in solution with an ab initio description of the reactant species and a classical representation of the solvent is presented. We study the dynamics of proton (deuterium) transfer in strongly hydrogen-bonded systems characterized by an energy surface presenting a double well separated by a low activation barrier. We have chosen the hydroxyl-water complex in liquid water to analyze the coupling between the reactive system and the environment. The proton is transferred from one well to the other with a frequency close to 1 ps−1 which is comparable to the low-frequency band associated to hindered translations, diffusional transl…

Hydrogen bonds ; Molecular dynamics method ; Ab initio calculations Ion exchange ; Solvent effects ; Reaction kinetics theory ; Density functional theory ; Intermolecular mechanicsProtonChemistryGeneral Physics and AstronomyIntermolecular mechanicsMolecular dynamics methodHydrogen bondsUNESCO::FÍSICA::Química físicaMolecular dynamicsAb initio calculations Ion exchangeDeuteriumReaction dynamicsChemical physicsComputational chemistryAb initio quantum chemistry methodsSolvent effectsReaction kinetics theoryDensity functional theoryDensity functional theoryPhysical and Theoretical ChemistrySolvent effectsChemical equilibrium:FÍSICA::Química física [UNESCO]
researchProduct

Theoretical study of spiropyran-merocyanine thermal isomerization.

2004

Abstract Quantum mechanical computations at DFT level were carried out on the processes involved in the thermal reaction SP ⇆ ME, where SP is the nitro-substituted spirobenzopyran (1 ′ ,3 ′ -dihydro-1 ′ ,3 ′ ,3 ′ -trimethyl-6-nitro-spiro[2H-1-benzopyran-2,2 ′ - [2H]indole]) in the closed form and ME is the corresponding open form. A detailed theoretical description of the overall reaction is reported along with the thermodynamic parameters for all intermediates and transition states. The obtained activation energy value is in agreement with the available experimental data in solution.

Indole testSpiropyranGeneral Physics and AstronomyActivation energyTransition statechemistry.chemical_compoundphotoreceptor ab initio calculations free energychemistryComputational chemistryThermalMerocyaninePhysical and Theoretical ChemistryQuantumIsomerization
researchProduct

N-heterocyclic carbenes and parent cations: acidity, nucleophilicity, stability, and hydrogen bonding-Electrochemical Study and ab initio calculations

2016

N-Heterocyclic carbenes (NHCs) are widely used as organocatalysts. Their reactivity (and instability) is related to their basicity and nucleophilicity, which, in turn, are linked to their scaffold. NHCs can be generated by chemical deprotonation or electrochemical reduction of the parent azolium cations, NHCH+s. Cyclic voltammetry enabled the reduction potential of the NHCH+s to be determined; the reduction potential is related to the acidity of the NHCH+s and the oxidation potential of the NHCs, which is related to the nucleophilicity of the NHCs. It was thus possible to order different NHCH+s and NHCs by their acidity and nucleophilicity, respectively. A study on the stability of NHCs was…

Ionic liquids electrochemistry ab initio calculations010405 organic chemistryHydrogen bondChemistrySettore CHIM/06 - Chimica Organica010402 general chemistryElectrochemistry01 natural sciencesMedicinal chemistryCatalysis0104 chemical sciencesCatalysisDeprotonationNucleophileAb initio quantum chemistry methodsComputational chemistrySettore CHIM/03 - Chimica Generale E InorganicaElectrochemistryReactivity (chemistry)Cyclic voltammetry
researchProduct

Theoretical study of the effect of substituent and backbone conformation on the electronic properties of symmetrically substituted poly(di‐n‐alkylsil…

1994

We present the results of ab initio 3‐21G∗ geometry optimizations and valence effective Hamiltonian (VEH) band structure calculations aimed at determining the evolution of the geometric and electronic (ionization potential, electron affinities, and band gaps) properties of all‐trans poly(dimethylsilane), poly(diethylsilane), poly(di‐n‐propylsilane), and poly(di‐n‐butylsilane) when increasing the size of the alkyl group. In the latter polymer, we have also studied the 7/3 conformation, in order to analyze the effect of the backbone conformation on the geometric and electronic structure. The VEH ionization potentials of all‐trans poly(di‐n‐alkylsilanes) are almost equal, and as experimental p…

OptimizationEnergy GapPropyl CompoundsBand gapAb initioSubstituentGeometryGeneral Physics and AstronomyElectronic structurechemistry.chemical_compoundAb initio quantum chemistry methodsComputational chemistryMethyl CompoundsConformational ChangesPhysical and Theoretical ChemistryBand Structure:FÍSICA::Química física [UNESCO]Electronic band structureAlkyl Compounds ; Silanes ; Organic Polymers ; Conformational Changes ; Ab Initio Calculations ; Geometry ; Optimization ; Band Structure ; Affinity ; Ionization Potential ; Energy Gap ; Methyl Compounds ; Ethyl Compounds ; Propyl CompoundsDimethylsilaneOrganic PolymersSilanesUNESCO::FÍSICA::Química físicaCrystallographyAlkyl CompoundsIonization PotentialAffinitychemistryEthyl CompoundsIonization energyAb Initio Calculations
researchProduct

Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches

2009

To simulate the perfect single-walled boron nitride nanotubes and nanoarches with armchair- and zigzag-type chiralities and uniform diameter of � 5 nm, we have constructed their one-dimensional (1D) periodic models. In this study, we have compared the calculated properties of nanotubes with those for both hexagonal and cubic phases of bulk: bond lengths, binding energies per B–N bond, effective atomic charges as well as parameters of total and projected one-electron densities of states. For both phases of BN bulk, we have additionally verified their lattice constants. In the density functional theory (DFT), calculations performed using formalism of the localized Gaussian-type atomic functio…

PhononChemistryC. electronic structureBinding energyD. elastic and vibrational properties02 engineering and technologyGeneral ChemistryElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesA. BN nanostructuresOptical properties of carbon nanotubesBond lengthCondensed Matter::Materials ScienceLattice constantAb initio quantum chemistry methodsB. ab initio calculations0103 physical sciencesGeneral Materials ScienceDensity functional theoryAtomic physics010306 general physics0210 nano-technologyJournal of Physics and Chemistry of Solids
researchProduct

Ab initio study on the low-lying excited states of retinal

1997

Ab initio results for the electronic spectrum of all-trans-retinal and its truncated model 3-methyl-all-trans (10-s-cis)-2,4,6,8,10-undecapentaen-1-al are presented. The study includes geometry determination of the ground state. Vertical excitation energies have been computed using multiconfigurational second-order perturbation theory through the CASPT2 formalism. The lowest singlet excited state in gas phase is predicted to be of nπ∗ character. The lowest triplet state corresponds, however, to a ππ∗ state. The most intense feature of the spectrum is due to the strongly dipole-allowed ππ∗ transition, in accordance with the observed maximum in the one-photon spectra. The vertical excitation …

PhotochemistryChemistryExcited statesAb initioGeneral Physics and AstronomyPerturbation theoryTriplet stateSpectral lineGround statesUNESCO::FÍSICA::Química físicaAb initio quantum chemistry methodsExcited stateOrganic compoundsSolvent effectsTwo-photon spectraIsomerisationAb initio calculationsSinglet statePhysical and Theoretical ChemistryAtomic physicsTriplet state:FÍSICA::Química física [UNESCO]Ground stateExcitationOrganic compounds ; Excited states ; Ab initio calculations ; Perturbation theory ; Triplet state ; Solvent effects ; Isomerisation ; Ground states ; Two-photon spectra ; Photochemistry
researchProduct